Large Deviations for Quasi-arithmetically Self-normalized Random Variables
نویسندگان
چکیده
We introduce a family of convex (concave) functions called sup (inf) of powers, which are used as generator functions for a special type of quasi-arithmetic means. Using these means we generalize the large deviation result that was obtained in the homogeneous case by Shao [14] on selfnormalized statistics. Furthermore, in the homogenous case, we derive the Bahadur exact slope for tests using self-normalized statistics. Résumé. Nous introduisons une famille de fonctions convexes (concaves) appelées sup (inf) de puissances, qui sont employées comme fonctions génératrices pour un type spécial de moyennes quasiarithmétiques. À l’aide de ces moyennes, nous généralisons le résultat que Shao [14] a obtenu dans le cas homogène sur les statistiques autonormalisées. De plus, dans le cas homogène, nous obtenons la pente exacte de Bahadur pour les tests utilisant les statistiques autonormalisées. 1991 Mathematics Subject Classification. 60F10, 62F05. The dates will be set by the publisher. Introduction The use of self-normalization in statistics dates back to Student’s t-distribution Tn := √ n Xn −m Sn where Xn := 1 n ∑n i=1Xi is the empirical mean and S 2 n := 1 n−1 ∑n i=1 ( Xi −Xn )2 is the empirical unbiaised variance of a Gaussian sample X1, . . . , Xn of mean m and unknown variance. This statistic Tn is widely used to test m = m0 against alternative and it is well known that Tn has normal limit distribution when n → ∞ (even when the variables Xi are i.i.d. non Gaussian). Shao [14] proved the associated large deviations results for i.i.d. random variables Xi that are self-normalized by homogenous means, i.e. an asymptotic estimate for P ( Xn Mp,n ≥ x ) 1 n (1)
منابع مشابه
Self-normalized Moderate Deviations and Lils
Let fXn;n 1g be i.i.d. R d-valued random variables. We prove Partial Moderate Deviation Principles for self-normalized partial sums subject to minimal moment assumptions. Applications to the self-normalized law of the iterated logarithm are also discussed.
متن کاملOn the Asymptotic of Likelihood Ratios for Self-normalized Large Deviations
Motivated by multiple statistical hypothesis testing, we obtain the limit of likelihood ratio of large deviations for self-normalized random variables, specifically, the ratio of P ( √ n(X̄ + d/n) ≥ xnV ) to P ( √ nX̄ ≥ xnV ), as n → ∞, where X̄ and V are the sample mean and standard deviation of iid X1, . . . , Xn, respectively, d > 0 is a constant and xn → ∞. We show that the limit can have a si...
متن کاملCramér Type Moderate deviations for the Maximum of Self-normalized Sums
Let {X ,X i , i ≥ 1} be i.i.d. random variables, Sk be the partial sum and V 2 n = ∑n i=1 X 2 i . Assume that E(X ) = 0 and E(X )<∞. In this paper we discuss the moderate deviations of the maximum of the self-normalized sums. In particular, we prove that P(max1≤k≤n Sk ≥ x Vn)/(1−Φ(x))→ 2 uniformly in x ∈ [0, o(n)).
متن کاملSelf-normalized Cramér type Moderate Deviations for the Maximum of Sums
Let X1, X2, . . . be independent random variables with zero means and finite variances, and let Sn = ∑n i=1Xi and V 2 n = ∑n i=1X 2 i . A Cramér type moderate deviation for the maximum of the self-normalized sums max1≤k≤n Sk/Vn is obtained. In particular, for identically distributed X1, X2, · · · , it is proved that P(max1≤k≤n Sk ≥ xVn)/(1 − Φ(x)) → 2 uniformly for 0 < x ≤ o(n1/6) under the opt...
متن کاملStrong large deviations for arbitrary sequences of random variables
We establish strong large deviation results for an arbitrary sequence of random variables under some assumptions on the normalized cumulant generating function. In other words, we give asymptotic expansions for the tail probabilities of the same kind as those obtained by Bahadur and Rao (Ann. Math. Stat. 31:1015–1027, 1960) for the sample mean. We consider both the case where the random variabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013